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The coherence function of sound waves propagating through an intermittently turbulent atmosphere
is calculated theoretically. Intermittency mechanisms due to both the turbulent energy cascade
�intrinsic intermittency� and spatially uneven production �global intermittency� are modeled using
ensembles of quasiwavelets �QWs�, which are analogous to turbulent eddies. The intrinsic
intermittency is associated with decreasing spatial density �packing fraction� of the QWs with
decreasing size. Global intermittency is introduced by allowing the local strength of the turbulence,
as manifested by the amplitudes of the QWs, to vary in space according to superimposed Markov
processes. The resulting turbulence spectrum is then used to evaluate the coherence function of a
plane sound wave undergoing line-of-sight propagation. Predictions are made by a general
simulation method and by an analytical derivation valid in the limit of Gaussian fluctuations in
signal phase. It is shown that the average coherence function increases as a result of both intrinsic
and global intermittency. When global intermittency is very strong, signal phase fluctuations become
highly non-Gaussian and the average coherence is dominated by episodes with weak turbulence.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2945162�

PACS number�s�: 43.28.Gq, 43.20.Fn, 43.28.Lv �RMW� Pages: 743–757

I. INTRODUCTION

The main purpose of this article is to examine how tur-
bulent intermittency affects the coherence of propagating
sound waves. Coherence of sound in a turbulent atmosphere
is important for remote sensing 1 and assessment of perfor-
mance of acoustic arrays for source localization.2 Theoretical
treatments of the coherence function �which describes the
dependence of coherence on spatial separation between the
observation points� for waves propagating in a random me-
dium are well developed in many regards.3–6 The calculated
coherence function depends significantly on the model for
the turbulence. In recent years, turbulence models have be-
come more realistic in contrast to early studies that dealt
with homogeneous, isotropic random scalar fields possessing
a Gaussian correlation function. For example, the coherence
function has now been calculated for the case of inhomoge-
neous, anisotropic turbulence with realistic spectra of tem-
perature and wind velocity fluctuations.7,8 Here, we consider
the introduction of an additional realism, namely, intermit-
tency.

Intermittency refers to the tendency of turbulence to oc-
cur in spatial and temporal bursts of activity. This property of
turbulence9,10 plays an important role in many practical prob-
lems. Mahrt11 has proposed classifying intermittency as in-
trinsic or global. The former occurs on scales less than the
outer scale of turbulence �the scale of largest eddies� as the
turbulent cascade process progressively concentrates turbu-
lent energy dissipation into smaller regions of space.12 Glo-
bal intermittency occurs on scales larger than the outer scale
and may have several causes related to uneven production of
turbulence in a particular environment. Possible causes in-
clude wind gusts from large-scale convective systems or to-
pographic flow, irregular episodes of turbulent mixing in sta-
bly stratified �night time� boundary layers, large organized
coherent structures, and uneven heating of the ground due to
clouds and variations in ground-surface properties. The terms
small scale and large scale are also used to describe intrinsic
and global intermittency, respectively. 11,13

Figure 1 is a conceptual illustration of intermittency and
its effects on wave propagation. The eddies occur in
“clouds,” each of which represents a global intermittency
event. Each turbulent cloud can be regarded as having its
own outer scale and turbulent strength. Within each cloud,
the smaller eddies organize into intermittent patches as a
result of the turbulent cascade process �intrinsic intermit-
tency�. The scattering experienced by sound waves propagat-
ing along various paths through this region varies greatly,

a�
Portions of this work were presented in V. E. Ostashev, D. K. Wilson, and
G. H. Goedecke “Intermittent scalar QW model and sound propagation
through intermittent turbulence,” in Proceedings of the 12th Long Range
Sound Propagation Symposium, New Orleans, LA, 2006, pp. 429–442.
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according to the number and intensity of clouds encountered.
Propagation paths that are longer than or comparable to the
size of the clouds, such as paths 1 and 2, experience regions
of weak and strong turbulence due to global, and to a lesser
extent due to intrinsic, intermittency. Paths 3–5 are short
compared to the size of the clouds and therefore experience
either strong or weak globally intermittent patches. Since
path 3 does not actually pass through a cloud, sound waves
propagating along this path experience very little scattering.
Paths 4 and 5 are through similar globally strong regions, but
scattering is stronger along path 4 because of differences in
intrinsic intermittency.

Several previous studies have dealt with the effect of
intrinsic intermittency on electromagnetic14,15 and
acoustic16–19 propagation. The underlying idea of these stud-
ies is that if the propagating waves sample a region smaller
than the outer scale, the index-of-refraction structure-
function parameter Cn

2 for the scattering region �which de-
scribes the strength of the inertial-subrange spectrum in this
region� becomes a random variable. The statistics of the
varying Cn

2 can be described by the well-known log-normal
model.20 According to this model, the smaller the sample
region, the greater the fluctuations in Cn

2.
Other studies have explicitly considered global intermit-

tency effects on wave propagation, or provide treatments for
intermittency effects that are not specifically global or
intrinsic.21–27 In these studies, it is generally assumed that the
length of the propagation path is large compared to the outer
scale. Hence, the fluctuations in Cn

2 resulting from intrinsic
intermittency are unimportant. However, statistical param-
eters for the turbulence, including Cn

2, may still vary as a
result of globally intermittent processes. Hentschel and
Procaccia22 considered an effect of intrinsic intermittency,
namely, the modification of the well-known −11 /3 power
law for inertial-subrange turbulence, over global-scale propa-

gation paths. Petenko and Shurygin27 combined a two-
regime model for global intermittency with a log-normal
model for intrinsic intermittency.

In comparison to previous works, in this article we study
the effects of combined intrinsic and global intermittency on
coherence for line-of-sight, plane-wave sound propagation
through a turbulent atmosphere. Of course, in order to model
the propagation in intermittent turbulence, one must first
model the intermittency. A sizable portion of the article is
concerned with a quasiwavelet �QW� model of intermittency.
A QW is a localized perturbation, analogous to a turbulent
eddy, to the temperature and/or velocity field.28,29 Several
QW models of atmospheric turbulence have been developed
recently, in which turbulence is represented as a collection of
self-similar QWs of many different sizes.28,30–32 These and
similar models have been used for studies of wave propaga-
tion and scattering in a turbulent atmosphere.33–37 Due to
their spatially localized nature, QWs can be a useful tool for
describing turbulence and other random phenomena with in-
trinsic and global intermittency features. QWs are also espe-
cially well suited to modeling inhomogeneous, anisotropic
turbulence because, unlike customary wavelets, they may be
distributed and oriented nonuniformly in space according to
any desired joint probability distributions.

In this paper, we first obtain formulas for the three-
dimensional �3D� spectrum, correlation function, variance,
and kurtosis predicted by a QW model of temperature fluc-
tuations with intrinsic intermittency. Then, the QW model is
generalized to account for global intermittency. Although
both temperature and velocity fluctuations affect the coher-
ence of a sound wave propagating in a turbulent atmosphere,
their contributions are additive and hence can reasonably be
studied separately.6,28,30 We therefore simplify the develop-
ment of a QW model of turbulence with intrinsic and global
intermittency by considering only temperature fluctuations.
Reference 32 reports on preliminary results in developing a
QW model of intermittent velocity fluctuations. Also, al-
though we apply the model here to sound-wave propagation
through turbulence, it potentially has broader applications,
e.g., to electromagnetic propagation, geological heterogene-
ities close to Earth’s surface and within the Earth,38

boundary-layer meteorology, and eddy-based simulation of
turbulence.

This paper is organized as follows. In Sec. II, a QW
model of temperature fluctuations with intrinsic intermit-
tency is developed. The model is generalized in Sec. III to
include global intermittency along a one-dimensional path.
In Sec. IV, this statistical framework for describing intrinsic
and global intermittency is used as the basis for a theory of
the coherence function of a sound wave propagating in a
turbulent atmosphere. Predictions of the theory are studied
with numerical simulation methods, and analytical approxi-
mations are derived and compared to the simulations. In Sec.
V, the obtained results are summarized.

II. QW MODEL FOR INTERMITTENT SCALAR
FLUCTUATIONS

In this section, basic formulas describing a QW model
for fluctuations in scalar quantities are briefly discussed.

FIG. 1. �Color online� Illustration of intrinsic and global intermittency, and
their effects on wave propagation. The solid circles represent turbulent ed-
dies and the dashed lines represent global regions of active turbulence. The
numbers and arrows indicate illustrative propagation paths as described in
the text.
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�The reader may refer to articles cited in the Introduction for
more details.� Then, these formulas are used to develop QW
models of temperature fluctuations with intrinsic and global
intermittency.

A. Basic formulas

The underlying idea of the QW model is to represent a
random field as a collection of randomly placed and oriented
objects. The objects, like customary wavelets, are spatially
localized and based on rescaling and translation of a parent
function. However, some properties of customary wavelets,
such as zero mean, can be relaxed. Their sizes and ampli-
tudes can be selected according to any desired scaling laws.
Lovejoy and Mandelbrot39 have called this sort of self-
similar representation a “fractal sum of pulses.” Although
most of the discussion to follow explicitly deals with turbu-
lent temperature fields, the same modeling approach can be
applied to other types of scalar fluctuations. For a QW model
of turbulence, the individual QWs are roughly analogous to
turbulent eddies.

A single temperature QW is a perturbation �T�n�R� to
the mean field given by

�T�n�R� = ��n�T�f��R − b�n�/a�� . �1�

Here, R= �x ,y ,z� are the Cartesian coordinates, and �
=1,2 , . . . ,N and n=1,2 , . . . ,N� are two indices, which de-
termine a particular QW. The index � determines the size a�

of a QW: There are N QW sizes arranged in a diminishing
order: a1�a2� ¯ �aN. The largest a1 and smallest aN sizes
are of the order of outer and inner scales of turbulence. In a
QW model, there are N� QWs with the same size a�; indi-
vidual QWs in a size class are distinguished by the index n.
Furthermore, in Eq. �1� b�n are the coordinates of the center
of the �nth QW, �T� is its amplitude, ��n is a random sign
factor with zero mean and unit variance,40 and f is the parent
function describing the shape of the QW. Note that b�n is a
random vector within the volume V where turbulence is
modeled and f is the same for all QWs. Different parent
functions f can be used in QW models. In what follows, a
theoretical development will be done for an arbitrary parent
function f . Specific results will subsequently be obtained for
the Gaussian parent function, given by f���
= �2��3/2 exp�−�2 /2�, where � is a nondimensional argu-

ment. The overall field of temperature fluctuations T̃�R� is
the sum of contributions from the individual QWs as fol-
lows:

T̃�R� = �
�=1

N

�
n=1

N�

�T�n�R� . �2�

Here, the sums are taken over all QW sizes used and over all
QWs within a particular size class.

A correlation function B�R� of temperature fluctuations
is defined as follows:

B�R1 − R2� = �T̃�R1�T̃�R2�� , �3�

where the brackets � � denote ensemble average and it is
assumed that temperature fluctuations are statistically homo-

geneous. The 3D spectrum ���� of temperature fluctuations,
where � is the turbulence wave vector, is a Fourier transform
of B�R�. For the case of isotropic, homogeneous turbulence,
���� depends only on the magnitude of the vector �. Sub-
stituting Eqs. �1� and �2� into Eq. �3�, and assuming that the
b�n and ��n are mutually independent, the following formula
for ���� can be obtained by averaging over an ensemble of
random realizations:30

���� = 8�3�
�=1

N

	�a�
3�T�

2F2��a�� . �4�

Here, 	�=N�a�
3 /V is the packing fraction of the QWs with

the same size a�, which is proportional to the ratio of the
volume occupied by these QWs to the total volume V where
temperature fluctuations are simulated. Furthermore, in Eq.
�4� F�
� is the spectral parent function; that is, the Fourier
transform of the parent function f���. For the Gaussian par-
ent function, F�
�=exp�−
2 /2�.

The correlation function B�R� is the inverse Fourier
transform of ����. By the convolution theorem, the inverse
transform of F2�
� is the convolution of f��� with itself.
Hence, the correlation function is

B�R� = �
�=1

N

	��T�
2 f2�R/a�� , �5�

where f2��� is defined as

f2��� = f��� � f��� =	 d3��f��� − ����f���� . �6�

The preceding formulas are quite general and can be
used to model random fields having a range of properties. To
capture the properties of turbulence, certain scaling relation-
ships should be imposed on the QW sizes a�, the packing
fractions 	�, and the temperature amplitudes �T�. For ex-
ample, to model statistically isotropic, homogeneous, and
nonintermittent temperature fluctuations, the scaling relation-
ships can be chosen as follows:30

a� = a1e
−���−1�, 	� = const, �T� = �T1�a�/a1�1/3,

�7�

where � is a positive parameter usually much smaller than 1.
According to the first of these scaling relationships, the
neighboring sizes have a constant ratio �e−��, which mimics
a self-similar turbulent cascade of eddies with different sizes.
The second relationship in Eq. �7� ensures that QWs with
different sizes occupy the same total volume, which is ex-
pected for nonintermittent turbulence. Finally, the third rela-
tionship produces the classical Kolmogorov spectrum of
temperature fluctuations in the inertial subrange as should be
the case for isotropic, homogeneous turbulence. After substi-
tution of Eq. �7� into Eq. �4� and some algebra, a spectrum
���� qualitatively similar to von Kármán’s is obtained.30

Figure 2�a� shows an example, random QW field. This
realization was made from 362 size classes ranging from
aN=0.2 m to a1=10 m. �QWs smaller than 0.2 m would not
be apparent in the image.� The packing fraction 	 is 0.0023
for all size classes and �T1=0.5 K. The QWs are distributed
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uniformly in a 160�60�80 m3 volume. A 100�20 m2

cross section along the xz-plane is shown. To mitigate edge
effects, the cross section is centered within the volume such
that all displayed points are at least 30 m �3a1� from a side
of the volume.

B. Intrinsic intermittency

1. Scaling relationships and cascades

To model temperature fluctuations with intrinsic inter-
mittency, the scaling relationships for a�, 	�, and �T� must
be chosen to capture the main properties of such fluctuations.
Regardless of whether intermittency is present, we anticipate
that the turbulence is a self-similar cascade process and thus
the distribution of size classes continues to be dictated by the
first relationship in Eq. �7�. However, for turbulence with
intrinsic intermittency, small eddies become less and less
space filling12 so that the second relationship in Eq. �7� does
not hold. To accommodate this property of intermittent scalar
turbulence, we assume �similarly to Ref. 32 where intermit-
tent velocity fluctuations were considered� that the packing
fraction 	� decreases as the QW size becomes smaller as
follows:

	� = 	�a�/a1�
. �8�

Here, 	 is a constant that is equal to the packing fraction 	1

of the largest QWs and 
�0 is a parameter characterizing a
degree of intrinsic intermittency. The greater the parameter

, the more intermittent the turbulence; 
=0 corresponds to
the nonintermittent case.

The cascade mechanism by which the small eddies be-
come less space filling controls the spatial distribution of the
QWs. In turbulence literature, the cascade mechanism is of-
ten conceived as a process repeated from one “generation” to
the next: Parent eddies produce children eddies that are con-
tained within, yet do not entirely fill, the space of the parents.
For example, a parent eddy of size a may break down into
several eddies of size a /2. In three dimensions, 23 children
eddies would be needed to maintain the packing fraction.
Less than 23 eddies would decrease the packing fraction.

This description coincides to the well-known beta model of
Frisch et al.,12 which defines the parameter � as the number
of children eddies divided by 23. Since �=	�+1 /	�

= �a�+1 /a��
 when a�+1 /a�=1 /2, it follows that �=2−
.
Frisch et al.12 showed that �=2D−3, where D
2.5 is the
fractal dimension. Hence, 
=3−D
0.5.

Schmitt et al.41 described a procedure for “scale densi-
fication” of the beta model that removes the restriction of the
parent eddy size being an integer multiple of the size of the
children. Lovejoy and Scherzer generalized the beta model
so that regions are not perfectly active or inactive.42 Con-
ceivably, the beta model or such a generalization thereof
could be adapted to place the QWs in space according to a
cascade process. However, there are many challenges, such
as how to provide a continuous placement of the QWs and
how to derive statistical results when the size classes are not
independent. Also, the beta model is highly idealized: Actual
eddies are swept through space during a cascade process and
the cascade process may be at different ages in different
regions of space. For present purposes, we do not attempt to
formulate a cascade spatial construction with the QWs; the
positions of QWs in each size class are independent of each
other and of the positions of QWs in the preceding size class.
This assumption is actually consistent with the fractal sum of
pulses method described by Lovejoy and Mandelbrot.39

Intrinsic intermittency of turbulence can also affect the
scaling relationship for QW amplitudes �T�. To accommo-
date this possibility, the scaling relationship for �T� is speci-
fied as follows:

�T� = �T1�a�/a1�1/3�	/	��� = �T1�a�/a1�1/3−
�, �9�

where � is another parameter characterizing the intrinsic in-
termittency. If �=0, the scaling relationship described by Eq.
�9� coincides with Eq. �7�. The value of the parameter �
depends on the problem under consideration. For example,
the value of � for turbulent temperature fluctuations might
differ from that for random heterogeneities within Earth. For
turbulence, a value for � can be derived from conservation
considerations, as has been previously demonstrated for a
QW model of turbulent velocity fluctuations with intrinsic
intermittency.32 Here, we extend this treatment to conserva-
tive scalar fluctuations such as temperature.

First, consider the specific �per unit mass� turbulent ki-
netic energy �TKE�. The TKE for size class � is proportional
to 	�v�

2 , where v� is the characteristic velocity scale. The
rate of transfer of TKE from eddies with scale a� to smaller
scales should be proportional to the TKE divided by the time
scale for the size class, a� /v�. Since kinetic energy is neither
created nor destroyed within the inertial subrange, the rate of
transfer should be invariant for turbulence in equilibrium.
Hence, 	�v�

3 /a�=	v1
3 /a1 for all �. Substituting with Eq. �8�,

we then have

v� = v1�a�/a1��1−
�/3. �10�

Similarly, the temperature variance associated with size class
� is 	��T�

2 . If the rate of variance transfer is to be preserved
�as it would be for a conservative scalar in steady turbu-
lence�, we must have 	��T�

2v� /a�=	�T1
2v1 /a1. Substituting

with Eqs. �8� and �9� then yields

FIG. 2. Examples of synthetic turbulence fields produced by random QW
ensembles. �a� Example without intermittency. �b� Example with intrinsic
intermittency �
=0.5�. �c� Same as �b�, except that the packing fraction has
been multiplied by 1 /3, and the amplitudes by �3. All scales are in K.
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�T� = �T1�a�/a1��1−
�/3 �11�

and hence � in Eq. �9� is 1 /3. The value ��0 implies that
the eddies �QWs� must spin relatively faster, and have a
stronger temperature amplitude, to compensate for the de-
creasing packing fraction.

Figures 2�b� and 2�c� are similar to Fig. 2�a�, except that
intrinsic intermittency with 
=0.5 and �=1 /3 is included.
Figure 2�c� furthermore decreases the packing fraction 	 by
1 /3 �to 0.000 76� for all size classes while increasing �T1 by
�3 �to 0.866 K�; according to Eq. �4�, these rescalings do not
alter the spectrum or correlation. With intrinsic intermittency,
there are noticeably fewer small QWs, although they are
stronger. Decreasing packing fraction also enhances the ap-
pearence of intermittency.

2. Spectra and correlations

With these revised scaling relationships, we can now
calculate the spectrum ���� from Eq. �4�. In this equation,
	� and �T� are replaced with their values given by Eqs. �8�
and �9�, respectively, and a� is replaced with its value given
by the first relationship in Eq. �7�. In the resulting formula,
assuming that ��1, the sum over � is replaced with the
integral over a using Eq. �8� from Ref. 30. As a result, we
obtain a formula for the 3D spectrum of temperature fluctua-
tions with intrinsic intermittency as follows:

���� = C��a1�−11/3−�	
kaN

ka1


8/3+�F2�
�d
 . �12�

Here, the new parameter � is a combination of the intrinsic
intermittency parameters 
 and �,

� � 
�1 − 2�� 
 1/6, �13�

and the coefficient C is given by

C � 8�3	a1
3�T1

2

�
. �14�

Equation �12� describes a 3D spectrum of temperature fluc-
tuations with intrinsic intermittency for an arbitrary parent
function F�
�. If �=0, this spectrum coincides with that for
nonintermittent temperature fluctuations �Eq. �9� in Ref. 30�.
Similarly, from Eq. �5� one finds

B�R� =
	�T1

2

�

 R

a1
�2/3+�	

R/a1

R/aN

�−5/3−�f2���d� . �15�

For the Gaussian spectral parent function F�
�=exp�−
2 /2�,
the integral on the right-hand side of Eq. �12� can then be
calculated as

�G��� =
C

2
��a1�−11/3−����11/6 + �/2,�2a1

2�

− ��11/6 + �/2,�2aN
2 �� . �16�

Here, ��a ,x� is the incomplete gamma function and the sub-
script G stands for “Gaussian.” For the case of nonintermit-
tent turbulence, when �=0, Eq. �16� coincides with Eq. �11�
from Ref. 30 as it should. For sound propagation in a turbu-
lent atmosphere, the sound wavelength is nearly always

greater than the inner scale of turbulence, which is of order
aN.

Although Eq. �16� is specific to the Gaussian parent
function, results for other reasonable parent functions have a
similar dependence on wave number.28,30 The scaling laws
�Eq. �7� for classical turbulence, or Eqs. �8� and �9� for in-
termittent turbulence�, when combined with the fractal size
distribution, lead to inertial subranges with a slope indepen-
dent of the parent function. The choice of parent function is
mainly significant in the energy-containing subrange ��a1

�1� and in the transition between subranges.
As for the correlation function, one can show for the

Gaussian parent function that

f2��� = 8�9/2e−�2/4. �17�

One then finds, from Eq. �15�,

BG�R� =
�3/2C

2a1
3 
 R

2a1
�2/3+�

���− 1/3 − �/2,R2/4a1
2�

− ��− 1/3 − �/2,R2/4aN
2 �� , �18�

where ��a ,x� is the complimentary incomplete gamma func-
tion. Since −1 /3−� /2 is negative for ��−2 /3, and the com-
plete gamma function ��a� is undefined for a negative argu-
ment, it is helpful to apply the recursion formula ��a+1,x�
=a��a ,x�+xae−x to rewrite Eq. �18� as

BG�R� =
�3/2C

�2/3 + ��a1
3�e−R2/4a1

2
− 
 R

2a1
�2/3+�

���2/3 − �/2,R2/4a1
2� − 
aN

a1
�2/3+�

e−R2/4aN
2

+ 
 R

2a1
�2/3+�

��2/3 − �/2,R2/4aN
2 �� . �19�

Temperature fluctuations with scale less than aN often do
not affect the coherence function and other statistical mo-
ments for line-of-sight sound propagation.6 Therefore, in
Eqs. �16� and �19�, it is often reasonable to set aN=0. The
terms involving aN thus vanish. In the energy subrange of
turbulence, where �a1�1, the incomplete gamma function
in Eq. �16� can be approximated as follows: ��11 /6
+� /2,�2a1

2�
��a1�11/3+� / �11 /6+� /2�. In this subrange, the
3D spectrum of temperature fluctuations does not depend on
� and is given by �G=C / �11 /3+��. In the inertial subrange,
where �a1�1, the incomplete gamma function in Eq. �16�
can be replaced with its asymptotic value for large values of
the argument. As a result �with aN=0�, we have

�G��� =
C��11/6 + �/2�

2
��a1�−11/3−�. �20�

It follows from this formula that increasing intermittency
�increasing �� steepens the decay of �G��� in the inertial
subrange. It is worthwhile to compare �G��� given by Eq.
�20� with the Kolmogorov spectrum
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���� = ACT
2�−11/3, �21�

which is valid in the inertial subrange of nonintermittent tur-
bulence. Here, A�0.033 is a numerical constant and CT

2 is
the structure-function parameter for temperature fluctuations.
For �=0, Eq. �20� has the same �-dependence as the classi-
cal �nonintermittent� Kolmogorov spectrum. If we constrain
the parameters in the QW representation such that

Ca1
−11/3 = 8�3	�T1

2

�a1
2/3 =

2A

��11/6 + �/2�
CT

2 , �22�

Eq. �22� implies �T1�a1
1/3. Equation �20� now becomes

�G��� = ACT
2�−11/3�ka1�−�. �23�

This result is consistent with Eq. 2.20 of Hentschel and
Procaccia.22 In the inertial subrange, the intermittency effect
modifies the �−11/3 power law to �−11/3−�
�−23/6.

For R /a1�1, the complementary incomplete gamma
function in Eq. �18� can be replaced with the complete
gamma function, and one has for the correlation function
�neglecting the effect of aN�

BG�R� 

�3/2C

�2/3 + ��a1
3�1 − 
 R

2a1
�2/3+�

��2/3 − �/2�� .

�24�

The structure function for the field is defined as D�R�
=2�B�0�−B�R��. For small separations, the structure function
becomes

DG�R� 

�3/2C��2/3 − �/2�

�1/3 + �/2�a1
3 
 R

2a1
��+2/3

. �25�

Substituting with Eq. �22�, we have

DG�R� 
 CT
2R2/3
 R

a1
��

, �26�

where we have made the definition

A =
�1/3 + �/2���11/6 + �/2�
21/3−��3/2��2/3 − �/2�

. �27�

�With this definition, A�0.033 when �=0, as expected.� If
aN is not identically zero, we have for R�aN

BG�R� =
�3/2C

2a1
3 
 R

2a1
��+2/3

���− 1/3 − �/2,R2/4a1
2�

− ��− 1/3 − �/2,R2/4aN
2 �� . �28�

Using Eq. �20�, the 3D spectrum �G��� �normalized by
C / �11 /3�, the value of �G�0� for �=0� is plotted in Fig. 3
versus the normalized wave parameter �a1 for �=0, 0.25,
and 0.5. The spectrum �G��� has two distinct regions. It is
almost constant in the energy subrange, where �a1�1, and
has a power law dependence on � in the inertial subrange,
where �a1�1. This is consistent with asymptotic behavior
of the spectrum in the energy and inertial subranges consid-
ered above. Furthermore, it follows from Fig. 3 that the
greater the parameter �, the smaller are the values of the

spectrum �G���. This tendency is more pronounced in the
inertial subrange where the spectral slope steepens with in-
creasing value of this parameter.

Figure 4 compares theoretical predictions to the struc-
ture function estimated from random realizations of QW
fields. The case considered is the same as Fig. 2�b�, namely,
aN=0.2, a1=10 m, 	=0.0023, and �T1=0.5 K. The esti-
mates were derived from correlation functions of 256 ran-
dom realizations. The theoretical curves shown are the exact
result �with discrete size classes� based on Eq. �5�, the con-
tinuous size-class approximation based on Eq. �18�, and the
inertial-subrange approximation, Eq. �25�. The simulations
and exact result are nearly indistinguishable. For very small
separations, the continuous approximation deviates some-
what from the exact result. The inertial-subrange approxima-
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tion is seen to be poor for this particular case; apparently, aN

is insufficiently small compared to a1 for this approximation
to be accurate.

3. Variance and kurtosis

The variance of temperature fluctuations �2 is needed in
many applications. For both intermittent and nonintermittent
turbulences, �2 can be determined by integrating the 3D
spectrum of temperature fluctuations or by taking the limit
R→0 of Eq. �15�. Using the latter approach, we have from
Eq. �5�

�2 = �
�=1

N

��
2 , �29�

where the contribution to the variance from size class � is

��
2 = 	��T�

2 f2�0� . �30�

To obtain the variance for the intermittent case, 	� and �T�

in Eq. �29� are replaced with their values given by Eqs. �8�
and �9�, respectively. We thus obtain

��
2 = 	�T1

2�a�/a1�2/3+�. �31�

Setting a�=a1e
−���−1� and recognizing Eq. �29� now as a

geometric series, we explicitly determine the sum as

�2 = 	�T1
2f2�0�

1 − e−��2/3+��N

1 − e−��2/3+�� 

	�T1

2f2�0�
��2/3 + ��

. �32�

The second approximate form is valid when there are many
closely spaced size classes ��N�1 and ��1�. Applying
Eqs. �14� and �17� yields the variance for Gaussian QWs as
follows:

�G
2 =

�3/2

�2/3 + ��
C

a1
3 . �33�

We see that the variance decreases with increasing intermit-
tency. When �=1 /6, �2 is 4 /5 times its value without inter-
mittency.

The kurtosis K is defined as the normalized fourth mo-

ment of a random field, namely, K= �T̃4� /�4. Since intermit-
tency generally leads to a kurtosis larger than the value for a
Gaussian random variable, namely, K=3, determination of
the kurtosis is of much interest �e.g., Refs. 43 and 44�. A

general formula for �T̃4� in the QW model is45

�T̃4� = Kt�
�=1

N

	��T�
4� + 3
�

�=1

N

��
2�2

, �34�

where �=�d3
f4�
� and Kt is the fourth moment of the ��n

�which as described earlier, have a unit variance�. For a QW
model in which the ��n are �1 with equal probability, Kt

=1. For a model in which the ��n are normally distributed,
Kt=3. Equation �34� is valid for both intermittent and non-
intermittent turbulence. To obtain the value of K for the in-
termittent case, a�, 	�, and �T� are replaced with their val-
ues given by Eqs. �7�–�9�, respectively. We thus obtain

K = 3 +
	�T1

4�Kt

�4 �
�=1

N

e−��−1�q, �35�

where q�
�1−4��. Unlike the variance, the fourth moment
�Eq. �34�� is not a simple sum of contributions from the size
classes. However, Eq. �35� shows that the deviation from
Gaussian statistics, K−3, can be considered as the sum of
contributions from the size classes if the variance is fixed. By
calculating the sum in Eq. �35�, a formula for the kurtosis of
temperature fluctuations with intrinsic intermittency results

K = 3 +
	�T1

4�Kt

�4

1 − e−��4/3+q�N

1 − e−��4/3+q�


 3 +
��2/3 + ��2�Kt

	�4/3 + q��f2�0��2 . �36�

The second, approximate form applies when �N�1 and �
�1.

The preceding formulas are valid for any parent func-
tion. For the Gaussian parent function,30 �= �� /2�3/2�2��.6

Combining this result with Eq. �17�, we obtain the kurtosis
for the case of the Gaussian parent function

KG = 3 +
��Kt

3�2��3/2	
. �37�

Here, the coefficient � is a combination of parameters � and
q �and thus 
 and �� as follows:

� =
�1 + 3�/2�2

1 + 3q/4
. �38�

For nonintermittent turbulence, when 
=0 and �=1, Eq. �37�
coincides with Eq. �44� from Ref. 30. The kurtosis can be
enhanced either by a low density of QWs �small 	 /�� or
intrinsic intermittency ���1�. Illustrations of the former
mechanism can be found in Ref. 30.

In Fig. 5, the coefficient � is plotted versus the param-
eters 
 and �. It follows from this figure that � varies in the
range from 1 to 2.23 for 0�
�0.5 and 0���0.5. Figure 5
can be used in choosing parameters of a QW model of tem-
perature fluctuations leading to a particular value of KG.
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To test the preceding expressions, we compare them to
variance and kurtosis from simulations. The cases considered
are the same as shown in Fig. 2; results from 256 such ran-
dom realizations were averaged. For the case without intrin-
sic intermittency and 	=0.0023, as illustrated in Fig. 2�a�,
the simulation results �with theoretical values in parentheses�
were �G

2 =0.420 �0.420� and KG=3.41 �3.34�. For the case
with intrinsic intermittency and 	=0.0023, as illustrated in
Fig. 2�b�, the simulation results were �G

2 =0.343 �0.350� and
KG=3.66 �3.56�. For the case with intrinsic intermittency and
	=0.000 76, as illustrated in Fig. 2�c�, the simulation results
were �G

2 =0.350 �0.350� and KG=4.82 �4.68�.

C. Global intermittency

As discussed earlier, global intermittency involves exter-
nally imposed variations in turbulence intensity over regions
larger than the outer scale of the turbulence. In this section,
we consider an approach to incorporating global intermit-
tency into a QW model.

The volume V where the turbulence is modeled is con-
ceptually subdivided into subvolumes Vi with characteristic
scales larger than a1. Within each of these subvolumes, QWs
occur as described in Sec. II B 1, although the parameters
may vary from one subvolume to another. In principle, any
or all of the parameters �T1, a1, aN, 	, �, 
, and � could
vary. Variations in the parameters �T1 and a1 are of particu-
lar interest since they depend on the external mechanism
creating the turbulence. The inner scale aN may vary but
does not strongly affect sound waves. The ratio 	 /� and the
parameter 
 are expected to have a physical meaning �the
packing of QWs as a function of their size� but be fixed for a
particular cascade process, such as turbulence. �The indi-
vidual parameters 	 and � are constructive in the QW model
but should not vary independently for a particular cascade
process.� According to Eq. �14�, variations in �T1 and a1

result in random values of the coefficient C. Then, it follows
from Eqs. �22� and �33� that the values of CT

2 and �G
2 are also

random and proportional to each other.
To proceed, we need statistical models for the variations

in �T1 and/or a1, or for quantities dependent on them, such
as C. Many and varied statistical models for global intermit-
tency have been considered in literature. Mahrt,11 Petenko
and Shurygin,27 and other authors used dichotomous regions
of strong and weak activity. Antonia et al.46 considered a
linear ramp model. Tatarskii and Zavorotnyi21 considered a
gamma probability density function �pdf�, and Frehlich24 a
log-normal pdf, for Cn

2. This diversity of approaches to mod-
eling global intermittency reflects the different mechanisms
producing it as well as the challenges of describing the un-
derlying physics with tractable models.

In the following, we consider a basic model for global
intermittency that can be readily related to a QW construc-
tion. Depending on how the parameters are adjusted, the
model can be made similar to most previous treatments of
global intermittency. It involves allowing the quantity C to
vary with the coordinate x along a linear path; in our case,
this path is the propagation path. The random field C�x� is
written as

C�x� = �C� + C��x� = �C��1 + ��x�� , �39�

where �C� is the mean value and C��x� is its fluctuating part,
and ��x�=C��x� / �C�.

Initially, we consider a two-state Markov process for
C�x�. �The reader may refer to a text such as Wilks47 for an
introduction to two-state Markov processes.� Within each
subvolume Vi along the propagation path, the turbulence is
either active �present� or inactive �absent�. The inactive state
is characterized by �T1=0 and C=0; the value for a1 is thus
immaterial. The values of �T1, C, and a1 are the same for all
active subvolumes. Let us designate Ca as the value of C
when in the active state, and the actual value of C within Vi

as Ci=CaXi, where Xi is a random variable equal to 0 when
Vi is an inactive state and 1 when it is active. The probability
of transitioning from an inactive state in the volume Vi to an
active state in Vi+1, while moving along the propagation path
from one subvolume to the next, is designated as p01. The
probability of remaining in an active state is designated p11,
and so forth. Since there are only two possible outcomes for
a transition from a given initial state, we must have p00

+p01=1 and p10+p11=1. This means that only two of the
transition probabilities are independent. By convention, these
are usually taken to be p01 and p11. If the Markov process has
positive memory, the probability of transitioning to a particu-
lar state is greater if the process is already in that state �p00

�p10, p11�p01�. Also of interest are the unconditional prob-
abilities of occurrence for the inactive and active states, des-
ignated �0 and �1=1−�0. Since �1 equals the sum of p01�0

and p11�1, we have

�1 =
p01

1 + p01 − p11
. �40�

The following relationships can also be proven:

�Xi� = �Xi
2� = �1, �41�

�Xi�
2� = ��Xi − �Xi��2� = �0�1, �42�

�Xi+j� Xi�� = �0�1�p11 − p01� j . �43�

Statistics involving Ci or Ci� follow after appropriate scaling
by Ca, e.g., �Ci�=Ca�1 and �Ci�

2�=Ca
2�0�1. Statistics for �i

follow from those for Xi� after scaling by �1
−1. Designating

the distance between the subvolumes as �, we can write Eq.
�43� as

�X��x + �x�X��x�� = �0�1�p11 − p01���x�/� = �0�1e
−��x�/L,

�44�

where L=� / ln�1 / �p11−p01��. The transition probabilities can
be determined from the mean activity level �1 and the cor-
relation length by L as follows:

p01 = �1�1 − e−�/L�, p11 = �1 + �0e
−�/L. �45�

Next let us suppose C�x� is the average of M indepen-
dent, identical two-state Markov processes, namely,
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C�x� =
Ca

M
�
m=1

M

Xi
�m�, �46�

where each of the Xi
�m� follow Eqs. �40�–�43�. We then find

�C�x�� = Ca�1, �47�

BC��x� = �C��x + �x�C��x�� =
Ca

2�0�1

M
e−��x�/L, �48�

B���x� = ���x + �x���x�� =
�0

M�1
e−��x�/L. �49�

Hence, the mean is unaffected, but the variance decreases
with increasing M. Since it counts the number of “successful
outcomes” of M independent trials with probability �1, C�x�
has a binomial distribution. For large M and �1 near 0.5, the
binomial distribution approaches a Gaussian one. Thus, an
advantage of this description for global intermittency is that
it encompasses a wide range of behaviors, from two-state
�purely active or inactive� to Gaussian.

The local spectrum follows from Eq. �16� but with the
random C�x�, namely,

�G�x;�� =
C�x�

2
��a1�−11/3−����11/6 + �/2,�2a1

2�

− ��11/6 + �/2,�2aN
2 �� . �50�

When the contribution from the term involving aN
2 is negli-

gible, �a1�1, and intrinsic intermittency is absent ��=0�,
our approach reduces to earlier works21,24 on inertial-
subrange intermittency where Cn

2 was allowed to vary with
position. Within the volume V, we can calculate the mean
spectrum �G by averaging the right-hand side of Eq. �50�
over an ensemble of realizations of C�x�, which according to
Eq. �47� amounts to replacing C�x� with Ca�1.

Figure 6 shows two realizations of QW fields with glo-
bal intermittency. The positions and amplitudes of the QWs
are actually the same as Fig. 2�b� �a case with intrinsic inter-
mittency� but are then modulated by a random C�x� process
with mean �C�x�� matching the original field; hence, the vari-
ance of the fields is unchanged. The value of C�x� at the
center position b�n is used to tailor its amplitude �T�n. Fig-
ure 6�a� is a realization of C�x� / �C�x�� with M =1, �1

=0.25, and L=10 m. The corresponding QW field is shown
in Fig. 6�b�. This model results in dramatic regions of weak
and strong activity. Figure 6�c� is a realization of
C�x� / �C�x�� with M =4, �1=0.5, and L=10 m. The corre-
sponding QW field is shown in Fig. 6�d�. Although the global
intermittency is much weaker than Fig. 6�b�, there are still
pronounced variations in turbulent activity.

III. COHERENCE FUNCTION

In this section, we derive a theory for the coherence of
propagating planar sound waves based on the intermittent
QW model derived in the previous two sections. The coher-
ence function is defined here as

��x,r� = �p�x,r0�p*�x,r0 + r�� . �51�

Here, p�x ,r� is the acoustic pressure, x is the distance from
the source plane to the observation plane, and r0 and r0+r
are points in the observation plane. Statistical homogeneity
in the observation plane is assumed, so that the coherence is
independent of r0. As mentioned in the Introduction, theories
for coherence have already been the subject of much devel-
opment. Typically, several important assumptions are made:
validity of the parabolic approximation, a long propagation
path compared to the size of the inhomogeneities, and
Gaussian statistics. Intermittency may weaken the validity of
the latter two approximations. For example, atmospheric
boundary-layer thermals and cloud-driven variations in sur-
face heating, which are sources of intermittency, may extend
over several kilometers. In this section, we first consider con-
ceptually how intermittency affects the coherence, and then
examine simulation results.

A. Local propagation paths

Initially, let us consider the coherence when the propa-
gation path length x is short compared to the scale L of
global intermittency. Paths 3–5 in Fig. 1 illustrate this situa-
tion. Intrinsic intermittency, as well as parameter variations
induced by global intermittency, can impact on the signal
propagation. For example, with the two-state Markov model
for global intermittency considered in Sec. II C, the propa-
gation path would be subject to either fully active or inactive

FIG. 6. Examples of synthetic turbulence fields produced by random QW
ensembles with global intermittency. �a� Random global intermittency for
C�x� / �C� produced by a Markov process with �1=0.25 and L=10 m. �b�
Same as the synthetic field in Fig. 2�b�, except that the field is modulated by
the process in �a�. �c� Random global intermittency for C�x� / �C� produced
by the average of four Markov processes with �1=0.5 and L=10 m. �d�
Same as the synthetic field in Fig. 2�b�, except that the field is modulated by
the process in �c�. Scales for �a� and �c� are dimensionless; scales for �b� and
�d� are in K.
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turbulence. This is important because we can consider the
statistics of the turbulence to be local and stable over the
propagation path.

Previous studies of intermittency have often examined
the statistics of point samples and line �or volume� averages
of the field. The coherence function actually involves a non-
linear combination of these types of statistics. The interpre-
tation can be made clear for geometric acoustics, in which
the sound follows ray paths directly from the source to the
receiver. However, interpretation is less clear when diffrac-
tion becomes important. In the geometric-acoustics approxi-
mation, p�x ,r�=p0 exp�i	�x ,r��, where p0=p �x=0,r� for all
r, and 	�x� is a random phase factor given by

	�x,r� = k	
0

x

n��x�,r�dx�. �52�

Here, n��x ,r�= �c0 /c�−1
−c� /c0 is a random variation in
the index of refraction. �The sound speed is c, c� is its fluc-
tuation, and c0 its mean.� For temperature fluctuations, which
in air are proportional to the squared sound speed, n�

−T� /2T0 for temperature fluctuations. Hence, the coherence
function is

��x,r� = p0
2�exp�ik	

0

x

�n��x�,0� − n��x�,r��dx��� .

�53�

This shows that the coherence function for geometric acous-
tics involves the difference between two line averages sepa-
rated by a distance r. A nonlinear function �the exponential�
of this quantity is then averaged to obtain the coherence.
Usually, QWs with size comparable to r will most strongly
affect coherence. QWs large compared to r are strong but
tend to affect both paths in the same manner, whereas those
smaller than r are relatively weaker.

If the phase factors 	�x ,r� are random variables with a
Gaussian distribution, the formula �exp����=exp���2� /2�
�where � is Gaussian with zero mean� leads to

��x,r� = p0
2 exp�− D	�x,r�/2� , �54�

where D	�x ,r� is the geometric-acoustics phase structure
function, defined as

D	�x,r� = ��	�x,0� − 	�x,r��2�

=
k2

2T0
2	

0

x 	
0

x

�B�x� − x�,0� − B�x� − x�,r��dx�dx�.

�55�

When the propagation path is much longer than the size of
the inhomogeneities �x�a1�,

D	�x,r� 

k2x

2T0
2	

−�

�

�B�x�,0� − B�x�,r��dx�. �56�

Using the spectrum, the preceding result can alternatively be
written as

D	�x,r� 

2�2k2x

T0
2 	

0

�

��1 − J0��r������d� . �57�

Here, J0 is the Bessel function of zero order. Hence, we have
the following hierarchy: Equation �53� is valid for geometric
acoustics, the additional assumption of Gaussian statistics
leads to Eqs. �53� and �55�, and the further additional as-
sumption of a long propagation path leads to Eqs. �56� and
�57�. One of the remarkable results of the conventional
theory of wave propagation in random media, based on
Gaussian statistics and the Markov approximation, is that Eq.
�54� with Eq. �57� remains valid in the parabolic approxima-
tion even when geometric-acoustics approximations do not.
Put another way, when the coherence is calculated with geo-
metric acoustics, the correct general result is obtained, even
though the calculation method does not correctly capture the
underlying physics involving diffraction or strong scattering.
Thus, we may identify limitations to the validity of the con-
ventional theory, such as those stemming from non-Gaussian
phase statistics induced by intermittency, by calculating the
coherence based on the geometric acoustics. It is plausible
that the geometric-acoustics based calculations of the coher-
ence remain correct even when there is intermittency.

Introducing now the complication that C may be a ran-
dom function �but constant along a particular propagation
path�, we generalize Eq. �54� as

�C�x,r� = p0
2 exp�− D	,C�x,r�/2� , �58�

where D	,C and �C�x ,r� are the structure function and coher-
ence associated with a particular value of C. For the global
intermittency model described in Sec. II C, C takes on dis-
crete values Cm following a binomial distribution, so the av-
erage coherence function is

�̄�x,r� = �
m=1

M

Pm�Cm
�x,r�

= p0
2�

m=1

M

Pm exp�− D	,Cm
�x,r�/2� , �59�

where Pm is the probability associated with Cm. If the
D	,Cm

�x ,r� are small �i.e., the coherences are high for values
of Cm�, the approximation
exp�−D	,Cm

�x ,r� /2�
1−D	,Cm
�x ,r� /2 leads to the follow-

ing result:

�̄�x,r� 
 p0
2 exp�− D̄	�x,r�/2� , �60�

where

D̄	�x,r� = PmD	,Cm
�x,r� �61�

is the average phase structure function. Since D	,Cm
�Cm,

D̄	� �C�. However, if the coherence is low and the phase
fluctuations are non-Gaussian, we should not expect Eq. �60�
to hold.

B. Global propagation paths

We next consider propagation paths that are long com-
pared to the scale L of global intermittency, as illustrated by
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paths 1 and 2 in Fig. 1. Such paths involve a varying turbu-
lence spectrum. A treatment for this situation follows from
the equation

��x,r� = p0
2 exp�−

�2k2

T0
2 	

0

x

dx�

�	
0

�

��1 − J0��r����x�;��d�� , �62�

which was derived in Ref. 7 for inhomogeneous turbulence.
Equation �62� assumes validity of the parabolic equation and
the Markov approximation for the random medium, and that
the turbulent fluctuations are Gaussian. When the strength of
the turbulence varies along the propagation path as described
by Eq. �50�, we have the following formula for the coher-
ence:

��x,r� = p0
2 exp�−

k2

a1
2T0

2 �W�r/a1,1�

− W�r/a1,aN/a1��	
0

x

C�x��dx�� , �63�

where W is a deterministic function given by

W��,s� =
�2

2
	

0

�


−8/3−��1 − J0�
�����11/6 + �/2,
2s2�d
 .

�64�

The solution for this integral is given in the Appendix. Note
that the right-hand side of Eq. �63� contains a function �the
integral� of the random variable C�x�. Therefore, to obtain
the desired expression for the mean coherence function, both
sides of Eq. �63� are averaged over an ensemble of realiza-
tions of this integral. �The physical meaning of such averag-
ing is discussed in detail in Ref. 21.� By applying Eq. �39�,
we can recast Eq. �63� in the following form:

��x,r� = p0
2 exp�− D̄	�x,r�/2�

�exp�−
D̄	�x,r�

2x
	

0

x

��x��dx�� , �65�

where

D̄	�x,r� =
2�C�k2x

a1
2T0

2 �W�r/a1,1� − W�r/a1,aN/a1�� . �66�

The average coherence function is thus

�̄�x,r� = p0
2 exp�− D̄	�x,r�/2�

��exp�−
D̄	�x,r�

2x
	

0

x

��x��dx��� . �67�

The final part of this expression, with angle brackets, repre-
sents the global intermittency effect. It is bounded as fol-
lows:

1 ��exp�−
D̄	�x,r�

2x
	

0

x

��x��dx���
 exp�D̄	�x,r�/2� . �68�

The first inequality follows from Jensen’s inequality, as pre-
viously noted in Refs. 21 and 26. The second inequality fol-
lows from the argument that �1 /x����x��dx� cannot be
smaller than −1, which would correspond to a state of com-
plete inactivity. Thus,

1 � �̄�x,r�/p0
2 � exp�− D̄	�x,r�/2� . �69�

Hence, for a fixed value of �C�, intermittency always in-
creases the average coherence.

According to the global intermittency model in Sec.
II C, in some situations ��x� approaches a Gaussian distribu-
tion. Actually, since the integral of ��x� is effectively the sum
of many samples of ��x� when x�L, it is even less restrictive
to consider the integral as a Gaussian random variable. As-
suming this is the case, we obtain the average coherence
function

�̄�x,r� = p0
2 exp�− D̄	�x,r�/2 + D̄	

2 �x,r�I�/8x2� , �70�

where I� is the following integral:

I� = 	
0

x 	
0

x

B��x1 − x2�dx1dx2 = 2��
2Lx�1 −

L

x
�1 − e−x/L�� .

�71�

The final result for I� corresponds to the correlation function
B� given by Eq. �49�, with ��

2=B��0�=�0 /M�1. Equation
�70� provides a formula for the coherence function of a plane
sound wave propagating in a turbulent atmosphere with in-
trinsic and global intermittency. It can actually be applied to
local propagation paths such that x�L. Then, e−x/L
1
− �x /L�+ �x /L�2 /2, and I�
��

2x2; that is, L ceases to affect
the result. The main limitation of Eq. �70� is that integrals of
the function � along the propagation path are assumed to
have a Gaussian distribution.

Figure 7 compares coherence calculations from Eq. �70�
with various combinations of intrinsic and global intermit-
tency conditions. The turbulence parameters, based on the
QW model, aN=0.2 m, a1=10 m, 	 /�=0.0721, and �T1

=0.866 K. The path length is x=1 km, the frequency 680 Hz
�wavelength 0.5 m�, and L=500 m. The case with no inter-
mittency ��=0 and ��

2=0� has the lowest coherence for all
separations r. Intrinsic intermittency alone ��=1 /6 and ��

2

=0� increases the coherence for small separations �r!a1�,
whereas global intermittency alone ��=0 and ��

2=1 /4� in-
creases the coherence for large separations. The combined
effect ��=1 /6 and ��

2=1 /4� is an overall increase in coher-
ence; it is nearly doubled for large separations.

Figure 8 shows the effect of changing the length scales
a1 and L. For each of the curves, �=1 /6 and ��

2=1 /4. One of
the curves is for a1=10 m and L=500 m, as in Fig. 7. When
a1 is increased to 20 m, coherence increases for small sepa-
rations but decreases for large ones. Increasing L to 2000 m,
on the other hand, increases the coherence for all separations.
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C. Simulation results

In this subsection, the effects of intrinsic and global in-

termittency on the theoretical coherence function �̄�x ,r� are
studied with simulated random QW fields. The acoustic
phases are calculated by numerically integrating Eq. �52�
with the trapezoidal method. The use of geometric acoustics
greatly simplifies the simulations and is justifiable for the
reasons discussed in Sec. II B 2. �Simulations of random
scattering by QWs, based on a finite-difference method, are
described in Ref. 37. These do not involve the geometric
approximation but are far more computationally intensive.�
The simulations are for essentially the same situation in Figs.
7 and 8, although with intrinsic intermittency ��=1 /6� al-
ways present. There are 362 QW size classes, and buffer
regions were used around the edges as described in Sec. II A.
Varying global intermittency conditions are considered:

none; M =4, �1=0.5, and L=500 m; and M =1, �1=0.25,
and L=500 m. For the second of these cases, ��

2=1 /4. We
designate this case moderate global intermittency. The third
case, for which ��

2=3, is designated strong global intermit-
tency. All statistics were determined from 1024 random real-
izations.

Figures 9 and 10 show results for the average phase

structure function, D̄	�x ,r�, and average coherence, �̄�x ,r�,
for propagation distances x=12.5 m and x=100 m. At these
distances, the discussion in Sec. III A regarding local propa-
gation paths �x�L� applies. The simulated curves for

D̄	�x ,r� �Fig. 9� are nearly independent of the global inter-
mittency condition, as they should be, since �C� is the same
for each case. Theoretical predictions based on Eq. �66�
agree very well with the simulations at x=100 m, but are too
high at x=12.5 m. The reason for this overprediction is that
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x�a1 at this distance, which means that the approximation
x�a1 inherent to Eqs. �57� and �62� is inapplicable. As
might be expected, disagreement between the simulated av-
erage coherence at x=12.5 m and predictions based on the
Gaussian approximation, Eq. �70� �Fig. 10�, also results.
Only one prediction from Eq. �70�, corresponding to no glo-
bal intermittency, is actually shown in Fig. 10 for each dis-
tance. This is because the Gaussian predictions are nearly
independent of the global intermittency characteristics at
these short distances. A particularly significant feature of Fig.
10 is the disagreement between the prediction and simula-
tions at x=100 m when global intermittency is present, but
not when global intermittency is absent. Since the average
phase structure functions are correctly predicted �Fig. 9� in
all cases, the assumption of Gaussian statistics upon which
Eq. �70� is based must be at issue.

The significance of the non-Gaussian nature of the glo-
bal intermittency is made clearer by Fig. 11, which shows the
kurtosis of the phase differences, �	�x ,0�−	�x ,r�� for r
=20 m, as a function of range. The kurtosis for the case
lacking global intermittency is nearly 3 at all ranges, as ex-
pected. For moderate intermittency, the kurtosis decays from
7 near the source to about 3.5 at x=1 km. For the strong
intermittency, the kurtosis starts near 13 and remains quite
high, around 10, at x=1 km. One would expect such strong
non-Gaussianity to affect the average coherence and, indeed,
as shown in Fig. 12, this is the case. The theoretical predic-
tion and simulation without global intermittency are in good
agreement. For moderate global intermittency, the simulated
average coherence becomes somewhat higher than the pre-
diction at distances x�100 m. No prediction is shown on the
figure for strong global intermittency, because the prediction
diverged in this case. The simulated coherence is dramati-
cally raised by the strong global intermittency: It is about
0.55 at 1 km versus 0.1 without global intermittency.
When there is such strong intermittency, the coherence is

dominated by the many cases in which there is little turbu-
lence along the propagation path.

IV. CONCLUSION

In this paper, a QW model of temperature fluctuations
with both intrinsic and global intermittency was developed.
Intrinsic intermittency was modeled by allowing the packing
fraction to decrease with eddy size. Formulas for the 3D
spectrum, variance, and kurtosis of temperature fluctuations
were subsequently derived. It was shown that increasing the
parameter �, which characterizes the degree of intrinsic in-
termittency, results in decreasing variance, but increasing
kurtosis, of temperature fluctuations. The increase in � also
leads to steepening of the inertial-subrange spectrum beyond
the familiar −11 /3 power law.

To introduce global intermittency into the QW model,
the overall turbulence volume was partitioned into subvol-
umes in which intrinsic intermittency of the temperature
fluctuations occurs as described above. Then, global inter-
mittency was modeled by allowing the temperature ampli-
tudes �T1 of the largest QWs �eddies� to change randomly
from one subvolume to another according to one or more
superimposed Markov processes.

The developed statistical framework for describing in-
trinsic and global intermittency was then used as the basis
for a theory of the coherence of a plane sound wave propa-
gating through intermittent temperature fluctuations. Calcu-
lations based on this theory show that intrinsic and global
intermittency both increase the average coherence. Simula-
tions suggest that when global intermittency is very strong,
such as might occur in stably stratified, night-time condi-
tions, signal phase fluctuations become highly non-Gaussian
and the coherence is dominated by episodes with little turbu-
lence. This finding is important, e.g., for the performance of
modern acoustic beam forming arrays, and should be exam-
ined experimentally. It would also be valuable to find ana-
lytical predictions for coherence in non-Gaussian conditions.
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The QW model of temperature fluctuations with intrinsic
and global intermittency is applicable with appropriate pa-
rameter adjustments to other intermittent scalar inhomogene-
ities, such as contaminants in the atmosphere and density
fluctuations of geological heterogeneities within Earth, and
can also be applied to other types of wave propagation, such
as seismic and electromagnetic.

ACKNOWLEDGMENTS

This work was supported by U.S. Army In-House Labo-
ratory Research Initiative �ILIR� and by U.S. Army Research
Office Grant No. W911NF-06-1-0007. We thank J. C. Wyn-
gaard and J. G. Brasseur �Pennsylvania State University� for
many insightful discussions. We dedicate this manuscript to
the memory of Dr. Steven Clifford and his many outstanding
contributions to wave propagation in random media.

APPENDIX: SOLUTION FOR THE INTEGRAL W

A solution for the integral equation �64� is derived in
this appendix. We begin by defining

I�y,s,a� =	
0

�


−2a+1��a,
2s2�J0�
y�d
 . �A1�

Then, Eq. �64� becomes

W�y,s� = ��2/2��I�0,s,a� − I�y,s,a�� �A2�

with a=11 /6+� /2.
We now determine the integral I�y ,s ,a�. First, we use

Eq. �6.5.12� from Ref. 48 to write the incomplete gamma
function as a confluent hypergeometric function. This gives

I�y,s,a� = a−1s2a	
0

�


1F1�a;1 + a;− 
2s2�J0�
y�d
 .

This integral can be solved with Eq. �7.663.6� from Ref. 49,
which reads �with �=0�

	
0

�

x1F1�a;b;− 
x2�J0�xy�dx

=
21−a��b�
��a�
a/2 ya−2e−y2/8
Wa/2−b+1,a/2−1/2
 y2

4

� . �A3�

Here, Wk,� is the Whittaker function. Setting b=1+a and 

=s2, we find

I�y,s,a� = 21−asaya−2e−y2/8s2
W−a/2,a/2−1/2
 y2

4s2� . �A4�

We can use Eq. �13.1.33� in Ref. 48 to rewrite this as

I�y,s,a� =
1

2

 y2

4
�a−1

e−y2/4s2
U
a,a,

y2

4s2� , �A5�

where U is Kummer’s confluent hypergeometric function.
Finally, we use Eq. �13.6.28� in Ref. 48 to recast this result
with an incomplete gamma function as follows:

I�y,s,a� =
1

2

 y2

4
�a−1

�
1 − a,
y2

4s2� . �A6�

A practical problem with this result for I�y ,s ,a� is that rou-
tines for incomplete gamma functions in many numerical
libraries do not allow negative arguments. In our case, with-
out intermittency ��=0�, we have 1−a=−5 /6. However,
��a� ,x� �unlike ��a� ,x�� is still a convergent function even
when a� 0. This problem can be avoided by using the re-
cursion relationship

��a� + 1,x� = a���a�,x� + xa�e−x. �A7�

Applying this recursion formula twice, we find

I�y,s,a� =
s2�a−1�

2�a − 1��
1 −
1

a − 2

y2

4s2�e−y2/4s2

+
1

a − 2

 y2

4s2�a−1

�
3 − a,
y2

4s2�� . �A8�

The argument to the incomplete gamma function is now
positive. We also see that in the limit y /s→0,

I�0,s,a� =
s2�a−1�

2�a − 1�
. �A9�

Finally, we have

W�y,s� =
�2s2�a−1�

4�a − 1� �1 − 
1 −
1

a − 2

y2

4s2�e−y2/4s2

−
1

a − 2

 y2

4s2�a−1

�
3 − a,
y2

4s2�� . �A10�

For small arguments, ��a ,z�=��a�−��a ,z����a�
−za /a. Hence, for small y /s,

W�y,s� �
�2s2�a−1�

4�a − 1� �1 − 
1 −
1

a − 2

y2

4s2�e−y2/4s2

−
1

a − 2

 y2

4s2�a−1���3 − a� −
1

3 − a

 y2

4s2�3−a�� .

�A11�

For a=11 /6, the term proportional to ��3−a� is the leading
order term, and we have

W�y,s� �
�2��1/6�

20

 y

2
�5/3

. �A12�
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